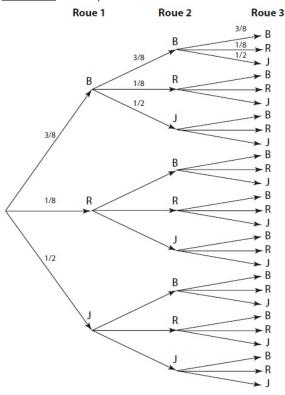
4. Correction des exercices

Exercice 7.1 1°)



2.a) Loi de probabilité de G:

k	0 8		20	64	1 024	
P(G=k)	$\frac{348}{512}$	$\frac{72}{512}$	$\frac{64}{512}$	$\frac{27}{512}$	$\frac{1}{512}$	

Remarque : pour P(X=0), il est plus simple de calculer le complément à 1 de la somme des autres probabilités que d'utiliser le calcul des probabilités à partir des différents chemins.

2.b)
$$E(G) = 0 \times \frac{348}{512} + 8 \times \frac{72}{512} + 20 \times \frac{64}{512} + 64 \times \frac{27}{512} + 1024 \times \frac{1}{512} = \frac{4608}{512} = 9$$
 (en $\ensuremath{\in}$). Cette loterie est favorable à l'organisateur. L'organisateur reçoit 12 $\ensuremath{\in}$ par ticket, donc il peut espérer un bénéfice moyen de 3 $\ensuremath{\in}$ par ticket.

Exercice 7.2 1°) La prise de commande par un client se solde soit par un succès (avec la probabilité p=0,1), soit par un échec : c'est une épreuve de Bernoulli de paramètre p (voir la Définition 7.1). Cette épreuve de Bernoulli est répétée chaque jour 8 fois de façon indépendante. On est donc dans le cas d'un schéma de Bernoulli d'ordre 8. X indique le nombre de succès, donc X suit la loi binomiale $\mathcal{B}(8;0,1)$ (Définition 7.2).

2.a)
$$P(X=2)=\binom{8}{2}\times 0, 1^2\times 0, 9^6\approx 0, 1488.$$
 2.b) $P(X<2)=P(X=0)+P(X=1)=0, 9^8+\binom{8}{1}\times 0, 1\times 0, 9^7\approx 0, 8131.$

Exercice 7.3 1. Le franchissement d'un obstacle est une épreuve de Bernoulli où la probabilité de succès est p=0,625. Lors du parcours, cette épreuve est répétée huit fois de façon indépendante. Dons on est dans le cas d'un schéma de Bernoulli d'ordre 8. X indique le nombre de succès donc X suit la loi binomiale de paramètres n=8 et p=0,625. Ainsi, E(X)=np, soit E(X)=5.

- 2. Durée théorique du parcours : $t = \frac{d}{v} = \frac{3}{15} = \frac{1}{5}$ (en heures), donc t = 12 (en minutes).
- 3. On note D la variable aléatoire qui indique la durée en minutes du parcours du cavalier.
 - (a) Le nombre de passage avec faute est 8-X, donc $D=12+1\times(8-X)$, soit D=20-X.
 - (b) E(D)=20-E(X), donc E(D)=15 (en minutes). Ainsi, la durée moyenne sur un grand nombre de parcours est 15 min.

Exercice 7.4 X est la variable aléatoire donnant le nombre de flèches qui touchent la cible. X suit la loi binomiale $\mathscr{B}(5; \frac{7}{10})$.

$$P(X=3) = {5 \choose 3} \times {(\frac{7}{10})}^3 \times {(\frac{3}{10})}^2 = {\frac{3087}{10000}}.$$

Exercice 7.5 1.a) Sous les hypothèses indiquées, le modèle est un schéma de Bernoulli d'ordre n.

- 1.b) La variable aléatoire X qui indique le nombre de filles suit la loi binomiale $\mathscr{B}\left(n;\frac{1}{2}\right)$.
- 2.a) \overline{A} signifie "Aucune fille n'est née lors des n naissances", c'est-à-dire "X=0".
- 2.b) $P(\overline{A}) = \binom{n}{0} \times \left(\frac{1}{2}\right)^0 \times \left(\frac{1}{2}\right)^n$, soit $P(\overline{A} = \frac{1}{2^n}$. Ainsi, $P(A) = 1 \frac{1}{2^n}$. 2.c) $P(A) > 0,99 \Leftrightarrow 2^n > 100$. La suite $(2^n)_{n\geqslant 1}$ est strictement croissante. Or : $2^6 = 64$ et $2^7 = 128$. Donc pour tout entier n tel que $n \geqslant 7$, $2^n \geqslant 2^7 > 100$.

Ainsi, le plus petit entier solution est $n_0 = 7$. La famille doit avoir au moins 7 enfants pour que la probabilité d'avoir une fille dépasse 0,99.

Exercice 7.6 Triangle de Pascal:

n k	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
6	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	56	9	1	
10	1	10	45	120	210	252	210	120	45	10	1

- a) On lit dans le triangle de Pascal : $\binom{n}{2} = 36$ pour n = 9.

b) On utilise les colonnes donnant $\binom{n}{4}$ et $\binom{n}{2}$. $3\binom{10}{4}=3\times 210=630,$ et $14\binom{10}{2}=14\times 45=630,$ d'où n=10. Remarque : l'expression des $\binom{n}{k}$ en fonction de n et de k, c'est-à-dire $\binom{n}{k}=\frac{n!}{k!\times (n-k)!},$ n'est pas au programme, c'est pourquoi nous utilisons ici le triangle de Pascal.

L'unicité de la solution trouvée est donc admise.